Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 219
Filtrar
1.
Cells ; 13(8)2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38667301

RESUMO

Phytohormones, particularly cytokinin trans-zeatin (tZ), were studied for their impact on the green alga Desmodesmus armatus under cadmium (Cd) stress, focusing on growth, metal accumulation, and stress response mechanisms. Using atomic absorption spectroscopy for the Cd level and high-performance liquid chromatography for photosynthetic pigments and phytochelatins, along with spectrophotometry for antioxidants and liquid chromatography-mass spectrometry for phytohormones, we found that tZ enhances Cd uptake in D. armatus, potentially improving phycoremediation of aquatic environments. Cytokinin mitigates Cd toxicity by regulating internal phytohormone levels and activating metal tolerance pathways, increasing phytochelatin synthase activity and phytochelatin accumulation essential for Cd sequestration. Treatment with tZ and Cd also resulted in increased cell proliferation, photosynthetic pigment and antioxidant levels, and antioxidant enzyme activities, reducing oxidative stress. This suggests that cytokinin-mediated mechanisms in D. armatus enhance its capacity for Cd uptake and tolerance, offering promising avenues for more effective aquatic phycoremediation techniques.


Assuntos
Antioxidantes , Cádmio , Clorófitas , Zeatina , Cádmio/toxicidade , Zeatina/metabolismo , Zeatina/farmacologia , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Clorófitas/efeitos dos fármacos , Clorófitas/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Fotossíntese/efeitos dos fármacos , Fitoquelatinas/metabolismo , Reguladores de Crescimento de Plantas/farmacologia , Reguladores de Crescimento de Plantas/metabolismo
2.
Aquat Toxicol ; 230: 105706, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33302172

RESUMO

Triclosan, a widely used biocide broadly found in aquatic environments, is cause of concern due to its unknown effects on non-targets organisms. In this study, a multi biomarker approach was used in order to evaluate the 72 h-effect of triclosan on the freshwater alga Pseudokirchneriella subcapitata (Raphidocelis subcapitata). Triclosan, at environmental relevant concentrations (27 and 37 µg L-1), caused a decrease of proliferative capacity, which was accompanied by an increase of cell size and a profound alteration of algae shape. It was found that triclosan promoted the intracellular accumulation of reactive oxygen species, the depletion of non-enzymatic antioxidant defenses (reduced glutathione and carotenoids) and a decrease of cell metabolic activity. A reduction of photosynthetic pigments (chlorophyll a and b) was also observed. For the highest concentration tested (37 µg L-1), a decrease of photosynthetic efficiency was detected along with a diminution of the relative transport rate of electrons on the photosynthetic chain. In conclusion, triclosan presents a deep impact on the microalga P. subcapitata morphology and physiology translated by multiple target sites instead of a specific point (cellular membrane) observed in the target organism (bacteria). Additionally, this study contributes to clarify the toxicity mechanisms of triclosan, in green algae, showing the existence of distinct modes of action of the biocide depending on the microalga.


Assuntos
Clorofíceas/efeitos dos fármacos , Clorófitas/efeitos dos fármacos , Desinfetantes/toxicidade , Triclosan/toxicidade , Poluentes Químicos da Água/toxicidade , Antioxidantes/metabolismo , Clorofíceas/metabolismo , Clorofila A/metabolismo , Clorófitas/metabolismo , Desinfetantes/metabolismo , Água Doce/química , Glutationa/metabolismo , Fotossíntese/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Triclosan/metabolismo , Poluentes Químicos da Água/metabolismo
3.
Environ Toxicol Chem ; 39(8): 1566-1577, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32367541

RESUMO

Freshwater biofilms play an important role in aquatic ecosystems and are widely used to evaluate environmental conditions. Little is known about the effects of temperature and metals on biofilm fatty acid composition. In the present study, we exposed a natural biofilm cultured in mesocosms to a gradient of nickel (Ni) concentrations at 15 and 21 °C for 28 d. Metal bioaccumulation, algal taxonomic composition, and biofilm fatty acid profiles were determined. At both temperatures, bioaccumulated Ni increased with Ni exposure concentration and reached the highest values at 25 µM Ni, followed by a decrease at 55 and 105 µM Ni. In control biofilms, palmitic acid (16:0), palmitoleic acid (16:1n7), oleic acid (18:1n9), linoleic acid (18:2n6), and linolenic acid (18:3n3) were the dominant fatty acids at 15 and 21 °C. This composition suggests a dominance of cyanobacteria and green algae, which was subsequently confirmed by microscopic observations. The increase in temperature resulted in a decrease in the ratio of unsaturated to saturated fatty acids, which is considered to be an adaptive response to temperature variation. Polyunsaturated fatty acids (PUFAs) tended to decrease along the Ni gradient, as opposed to saturated fatty acids which increased with Ni concentrations. Temperature and Ni affected differently the estimated desaturase and elongase activities (product/precursor ratios). The increase in PUFAs at 15 °C was concomitant to an increase in Δ9-desaturase (D9D). The estimated activities of D9D, Δ12-desaturase, and Δ15-desaturase decreased along the Ni gradient and reflected a decline in PUFAs. The elevated estimated elongase activity reflected the observed increase in saturated fatty acids at the highest Ni exposure concentration (105 µM). Our results suggest that fatty acids could be used as an endpoint to evaluate environmental perturbations. Environ Toxicol Chem 2020;39:1566-1577. © 2020 SETAC.


Assuntos
Biofilmes/efeitos dos fármacos , Clorófitas/efeitos dos fármacos , Ácidos Graxos/metabolismo , Níquel/farmacologia , Temperatura , Ácidos Graxos Insaturados/metabolismo , Análise de Componente Principal , Estresse Fisiológico/efeitos dos fármacos
4.
Ecotoxicol Environ Saf ; 195: 110488, 2020 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-32200143

RESUMO

Effect of water accommodated fractions (WAF) of #180 fuel oil on fixed carbon and nitrogen in microalgae was studied by stable isotopes. Platymonas helgolandica, Heterosigma akashiwo and Nitzschia closterium were exposed to five WAF concentrations for 96 h. The δ13C value of microalgae was significantly lower than that of the control group, indicated that carbon was limited in the WAF concentrations. The δ13C value of microalgae appeared peak valley at 48 h in control group, corresponding to the enhanced capacity in carbon fixation during microalgae photosynthesis. The physiological acclimation capacity of microalgae was revealed by the occurrence time when the δ13C value was in peak valley, and thus the physiological acclimation capacity of microalgae decreased in the order of Nitzschia closterium > Heterosigma akashiwo > Platymonas helgolandica. Principal component analysis (PCA) were applied to the δ13C value in order to verify the "hormesis" phenomenon in microalgae. The δ13C value could discriminate between stimulatory effects at low doses and inhibitory effects at high doses. In addition, the present study also investigated the effect of the nitrogen on microalgae growth. Because microalgae could still absorb the NO3-N and release of NO2-N and NH4-N in present study, the nitrogen cycle in microalgae was in the equilibrium status. The δ15N value in microalgae exhibited no obvious change with the increasing of WAF concentrations at the same time. However, due to the enrichment of nitrogen, the δ15N value first increased gradually with the time and finally was stable. Overall, the fractionation of carbon and nitrogen stable isotopes illustrated that the effect of carbon on the growth of microalgae was more prominent than nitrogen. Stable isotopes was used to investigate the influence of WAF on fixed carbon and nitrogen in microalgae growth, providing a fundamental theoretical guidance for risk assessment of marine ecological environment.


Assuntos
Carbono/análise , Óleos Combustíveis/toxicidade , Microalgas/efeitos dos fármacos , Nitrogênio/análise , Poluentes Químicos da Água/toxicidade , Ciclo do Carbono/efeitos dos fármacos , Isótopos de Carbono/análise , Clorófitas/química , Clorófitas/efeitos dos fármacos , Clorófitas/crescimento & desenvolvimento , Diatomáceas/química , Diatomáceas/efeitos dos fármacos , Diatomáceas/crescimento & desenvolvimento , Microalgas/química , Microalgas/crescimento & desenvolvimento , Isótopos de Nitrogênio/análise , Fotossíntese/efeitos dos fármacos , Estramenópilas/química , Estramenópilas/efeitos dos fármacos , Estramenópilas/crescimento & desenvolvimento , Água/química , Poluentes Químicos da Água/química
5.
Environ Sci Pollut Res Int ; 26(20): 20815-20828, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31111387

RESUMO

The effects of iron (Fe), zinc (Zn), and molybdenum (Mo) on the biomass yield, lipid content, lipid yield, and fatty acid composition of Chlorella sp. NC-MKM, Graesiella emersonii NC-M1, Scenedesmus acutus NC-M2, and Chlorophyta sp. NC-M5 were studied. Among them, G. emersonii NC-M1 recorded the highest percentage increase in lipid content (140.3%) and neutral lipid (50.9%) under Zn-supplemented condition compared to the control. Also, it showed a 105% and 41.88% increase in lipid yield and neutral lipid under Fe-supplemented condition compared to the control. However, Chlorella sp. NC-MKM recorded an elevation in lipid yield (70.3% rise) and neutral lipid (24.32% rise) compared to the control in Mo-supplemented condition. The enhanced production of reactive oxygen species (ROS) and antioxidant enzyme (SOD and POD) under Fe-, Zn-, and Mo-supplemented condition supports the lipid accumulation. FAME analysis showed that the overall percentage of SFA and MUFA increased after the addition of Fe, Zn, and Mo in a culture medium compared to the control which is vital for a good-quality biodiesel. Further, biodiesel properties derived from FAMEs such as CN, SV, IV, CFPP, OS, υ, ρ, and HHV were found in accordance with biodiesel standard.


Assuntos
Ferro/farmacologia , Metabolismo dos Lipídeos/efeitos dos fármacos , Microalgas/efeitos dos fármacos , Molibdênio/farmacologia , Zinco/farmacologia , Biocombustíveis , Chlorella/efeitos dos fármacos , Chlorella/metabolismo , Clorófitas/efeitos dos fármacos , Clorófitas/metabolismo , Meios de Cultura/química , Meios de Cultura/farmacologia , Ácidos Graxos/análise , Lipídeos/química , Microalgas/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Scenedesmus/efeitos dos fármacos , Scenedesmus/metabolismo
6.
Chemosphere ; 224: 93-102, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30818199

RESUMO

In their environments, aquatic organisms are simultaneously exposed to mixtures of several endocrine disrupting compounds, including hormones. However, most of the toxicity studies so far focused on effects of single contaminants. The available information on the potential toxicity of combined hormones on microalgae is extremely limited. For these reasons the aim of this study was to evaluate the individual and mixture effect of estrone (E1), ß-estradiol (E2), estriol (E3), 17-α-ethinylestradiol (EE2), progesterone (PRO), 5-pregnen-3ß-ol-20-one (PRE), levonorgestrel (LG) and testosterone (TST) on Chlorella vulgaris and Scenedesmus armatus. Green algae cells were exposed to different concentrations (0.1-100 mg L-1) of hormones for 14 days. Biomass in the form of dry weight and chlorophyll a was examined. The decreasing order of toxicity (based on EC50, 14d) to Chlorella vulgaris and Scenedesmus armatus was: EE2>PRO > E2>PRE > TST > E3>LG > E1 and EE2>PRO > TST > E2>PRE > LG > E1>E3, respectively. Chlorella vulgaris was more sensitive to the effects of hormones than Scenedesmus armatus. Although mixed hormones were more toxic to green algae than single hormones, in the ecosystem mixtures can pose higher ecological risk than single pollutants. Therefore, data on the toxicology of both single and mixed hormones is very valuable for assessment of the possibility of adverse ecological effects caused by these pollutants. Furthermore, these results suggest that environmental exposure to hormone mixtures may cause toxicity levels different to the sum of those of the single hormones and provides a basic understanding of their toxic effect on algae.


Assuntos
Clorófitas/efeitos dos fármacos , Misturas Complexas/toxicidade , Hormônios/toxicidade , Chlorella vulgaris/efeitos dos fármacos , Chlorella vulgaris/crescimento & desenvolvimento , Clorófitas/crescimento & desenvolvimento , Disruptores Endócrinos/toxicidade , Microalgas/efeitos dos fármacos , Scenedesmus/efeitos dos fármacos , Scenedesmus/crescimento & desenvolvimento , Poluentes Químicos da Água/farmacologia
7.
Bioresour Technol ; 281: 469-473, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30850256

RESUMO

Two acid-tolerant microalgae, Desmodesmus sp. MAS1 and Heterochlorella sp. MAS3, originally isolated from non-acidophilic environment, were tested for their ability to withstand higher concentrations of an invasive heavy metal, cadmium (Cd), at an acidic pH of 3.5 and produce biomass rich in biodiesel. The growth analysis, in terms of chlorophyll, revealed that strain MAS1 was tolerant even to 20 mg L-1 of Cd while strain MAS3 could withstand only up to 5 mg L-1. When grown in the presence of 2 mg L-1, a concentration which is 400-fold higher than that usually occurs in the environment, the microalgal strains accumulated >58% of Cd from culture medium at pH 3.5. FTIR analysis of Cd-laden biomass indicated production of significant amounts of biodiesel rich in fatty acid esters. This is the first study that demonstrates the capability of acid-tolerant microalgae to grow well and remove Cd at acidic pH.


Assuntos
Biocombustíveis , Biomassa , Cádmio/farmacologia , Clorófitas/metabolismo , Microalgas/metabolismo , Clorófitas/efeitos dos fármacos , Meios de Cultura , Ácidos Graxos/metabolismo , Concentração de Íons de Hidrogênio , Microalgas/efeitos dos fármacos
8.
Anal Bioanal Chem ; 411(10): 2057-2069, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30734083

RESUMO

Ecotoxicological screening of surface waters can involve multiple analyses using multiple bioassay and chemical analytical methods that require enriched samples to reach low concentrations. Such broad screening of the same sample necessitates sufficient sample volume-typically several liters-to produce a sufficient amount of enriched sample. Often, this is achieved by performing parallel solid-phase extractions (SPE) where extracts are combined into a pool-this is a laborious process. In this study, we first validated our existing SPE method for the chemical recovery of an extended set of compounds. We spiked four estrogenic compounds and 11 herbicides to samples from independent rivers (1 L) and wastewater treatment plant effluents (0.5 L). Then, we investigated the effect of increased sample loading of the SPE cartridges on both chemical and biological recoveries by comparing the validated volumes with four times larger sample volumes (i.e., 4 L river water and 2 L effluent). Samples were analyzed by LC-MS/MS and three bioassays: an estrogen receptor transactivation assay (ERα-CALUX), the combined algae test, and a bacterial bioluminescence inhibition assay. Our existing SPE method was found to be suitable for enriching the extended set of estrogens and herbicides in river water and effluents with near to perfect chemical recoveries (~ 100%), except for the herbicide metribuzin (46 ± 19%). In the large volume river and effluent samples, the biological activities and concentrations of the spiked compounds were between 87 and 104% of those measured with the lower sample loading, which is adequate. In addition, the ratio between the large and original volume SPE method for the non-target endpoint (bacterial bioluminescence inhibition) was acceptable (on average 82 ± 9%). Results indicate that our current water extraction method can be applied to up to four times larger sample volumes, resulting in four times more extract volumes, without significant reductions in recoveries for the tested estrogens and herbicides. Graphical abstract ᅟ.


Assuntos
Monitoramento Ambiental/métodos , Estrogênios/isolamento & purificação , Herbicidas/isolamento & purificação , Extração em Fase Sólida/métodos , Poluentes Químicos da Água/isolamento & purificação , Bactérias/efeitos dos fármacos , Clorófitas/efeitos dos fármacos , Cromatografia Líquida/métodos , Exposição Ambiental/efeitos adversos , Exposição Ambiental/análise , Estrogênios/toxicidade , Herbicidas/toxicidade , Rios/química , Espectrometria de Massas em Tandem/métodos , Testes de Toxicidade/métodos , Águas Residuárias/análise , Poluentes Químicos da Água/toxicidade
9.
Aquat Toxicol ; 207: 153-162, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30572175

RESUMO

Effects on short-term (6 h) and long-term (96 h) exposure to cadmium (Cd) at 0.1, 0.5 and 2.5 mg/L in microalga Dunaliella salina were assessed using both physiological end points and gene expression analysis. Different physiological responses between the short-term and long-term exposures were observed. Upon 6 h after Cd exposure, lipid peroxidation and cell ultrastructure remained unchanged, while contents of chlorophyll a, chlorophyll b, carotenoids were increased at 0.5 and 2.5 mg/L Cd. Contrarily, 96 h after Cd exposure, lipid peroxidation levels were increased, while pigments content was decreased, and damaged cell ultrastructure was apparent at 2.5 mg/L Cd. Activities of antioxidant enzymes (APX, SOD, GST, GPX, and GR) changed differently both at 6 h and 96 h after Cd exposure. Upon 6 h after Cd exposure, SOD and GST activity increased at all three doses, GR and GPX activity increased at 0.5 mg/L Cd while APX activity increased at 0.1 mg/L Cd. Contrarily, 96 h after Cd exposure, activities of all the antioxidant enzymes increased both at 0.1 and 0.5 mg/L Cd; but there was a decrease in SOD and GR activity in D. salina exposed to 2.5 mg/L Cd. RNA-seq and qRT-PCR analyses indicated that genes involved in ROS-scavenge, photosystem, and ribosome functions were differentially expressed. The most significantly enriched function was the ribosome, in which more than 30 ribosome genes were up-regulated at 6 h but down-regulated at 96 h after Cd exposure at 2.5 mg/L. Our study indicated for the first time that genes encoding ribosomal proteins are the primary target for Cd in microalgae, which allowed gaining new insights into temporal dynamics of toxicity and adaptive response pathways in microalgae exposed to metals.


Assuntos
Cádmio/toxicidade , Clorófitas/genética , Clorófitas/fisiologia , Sequestradores de Radicais Livres/metabolismo , Complexo de Proteínas do Centro de Reação Fotossintética/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Ribossomos/metabolismo , Transcrição Gênica , Antioxidantes/metabolismo , Clorófitas/efeitos dos fármacos , Clorófitas/ultraestrutura , Peroxidação de Lipídeos/efeitos dos fármacos , Microalgas/genética , Microalgas/crescimento & desenvolvimento , Microalgas/fisiologia , Microalgas/ultraestrutura , Modelos Biológicos , Estresse Oxidativo/efeitos dos fármacos , Pigmentos Biológicos/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ribossomos/efeitos dos fármacos , Fatores de Tempo , Transcrição Gênica/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade
10.
Bioresour Technol ; 270: 489-497, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30245319

RESUMO

In the present study, microalgae Chlorococcum humicola and Chlorella vulgaris were grown in different concentrations of NaCl (25-1000 mM) to elucidate its impact on morphology, lipid synthesis, minerals status and antioxidative responses. Scanning Electron microscopy showed distorted cell morphology and increased cell size by 33.52% (C. humicola) and 27.79% (C. vulgaris) at 100 mM NaCl. Energy Dispersive Spectroscopy data revealed reduction in mineral contents (C, S, Fe, Mg, Si, Mn and Zn) by 14-54% in both algae. Further, C. humicola was found to have high lipid content than C. vulgaris under NaCl regime. The activities of superoxide dismutase, catalase and glutathione reductase were increased by 2.5-5 folds in both algae as compared to control. The increased level of ascorbate, cysteine and proline in both algae indicated tolerance against salinity. Thus, C. humicola and C. vulgaris may exhibit dual benefits viz., high lipid production and reclamation of sodic soil.


Assuntos
Antioxidantes/metabolismo , Chlorella vulgaris/metabolismo , Clorófitas/metabolismo , Lipídeos/biossíntese , Nutrientes/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Cloreto de Sódio/farmacologia , Catalase/metabolismo , Chlorella vulgaris/efeitos dos fármacos , Clorófitas/efeitos dos fármacos , Glutationa Redutase/metabolismo , Superóxido Dismutase/metabolismo
11.
Aquat Toxicol ; 204: 80-90, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30205248

RESUMO

Over the last decade, concerns have been raised regarding the potential health and environmental effects associated with the release of metal oxide nanoparticles (NPs) into ecosystems. In the present work, the potential hazards of nickel oxide (NiO) NPs were investigated using the ecologically relevant freshwater alga Pseudokirchneriella subcapitata. NiO NP suspensions in algal OECD medium were characterized with regard to their physicochemical properties: agglomeration, surface charge, stability (dissolution of the NPs) and abiotic reactive oxygen species (ROS) production. NiO NPs formed loose agglomerates and released Ni2+. NiO NPs presented a 72 h-EC50 of 1.6 mg L-1, which was evaluated using the algal growth inhibition assay and allowed this NP to be classified as toxic. NiO NPs caused the loss of esterase activity (metabolic activity), the bleaching of photosynthetic pigments and the intracellular accumulation of reactive oxygen species (ROS) in the absence of the disruption of plasma membrane integrity. NiO NPs also disturbed the photosynthetic process. A reduction in the photosynthetic efficiency (ΦPSII) accompanied by a decrease in the flow rate of electrons through the photosynthetic chain was also observed. The leakage of electrons from the photosynthetic chain may be the origin of the ROS found in the algal cells. The exposure to NiO NPs led to the arrest of the cell cycle prior to the first cell division (primary mitosis), an increase in cell volume and the presence of aberrant morphology in the algal cells. In this work, the use of different approaches allowed new clues related to the toxicity mechanisms of NiO NPs to be obtained. This work also contributes to the characterization of the environmental and toxicological hazards of NiO NPs and provides information on the possible adverse effects of these NPs on aquatic systems.


Assuntos
Clorófitas/efeitos dos fármacos , Água Doce , Nanopartículas/toxicidade , Níquel/toxicidade , Testes de Toxicidade , Ciclo Celular/efeitos dos fármacos , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Clorófitas/citologia , Clorófitas/crescimento & desenvolvimento , Clorófitas/metabolismo , Fotossíntese/efeitos dos fármacos , Pigmentos Biológicos/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Suspensões , Poluentes Químicos da Água/toxicidade
12.
Bull Environ Contam Toxicol ; 101(2): 205-213, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29974164

RESUMO

Algal test using chlorococcal algae Desmodesmus subspicatus was used to determine single acute toxicity of either diclofenac or cadmium and to assess acute toxicity of their binary mixtures. The test confirmed significant acute toxicity of both diclofenac and cadmium; diclofenac with acute toxicity ErC50 60.44 ± 0.20 mg/L and cadmium with acute toxicity ErC50 2.14 ± 0.02 mg/L. This study of acute toxicity of binary cadmium-diclofenac mixtures confirmed their negative effects on aquatic producers and it also proved influence of the above substances on acute toxicity of their mixtures. Normalization method was applied to predict acute toxicity of binary mixtures composed of chemicals with significantly different acute toxicities. Normalization method used molar ratio (R) of chemicals in binary mixtures as their composition descriptor.


Assuntos
Anti-Inflamatórios não Esteroides/toxicidade , Cádmio/toxicidade , Clorófitas/efeitos dos fármacos , Diclofenaco/toxicidade , Interações Medicamentosas
13.
Ecotoxicol Environ Saf ; 162: 192-200, 2018 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-29990731

RESUMO

Nanographene oxide (nGO) has been recently proposed as a new antitumoral therapeutic agent, drug delivery carrier and gene transfection vehicle, among others. Treatment is carried out by hyperthermia induced by infrared irradiation. After treatment, the nanosystems will be inevitably excreted and released to the environment. To understand the potential impacts of pegylated nGO (nGO-PEG), three key species from different trophic levels were used: the green micro-algae Raphidocelis subcapitata (growth inhibition test), the cladocera Daphnia magna (acute and chronic tests), and the fish Danio rerio (fish embryo test). Besides a regular standard procedure to assess toxicity, and considering the mode of action of nGO-PEG in cancer treatment, a simultaneous infrared lamp exposure was carried out for D. magna and D. rerio. Additionally, and taking advantage of the phenotypic transparency of D. magna, nGO-PEG was fluorescently tagged to evaluate the potential uptake of nGO-PEG. The R. subcapitata growth inhibition test showed effects during the first 48 h, recovering till the end of the test (96 h). No acute or chronic effects were observed for D. magna, under standard or infrared light exposures although confocal microscope images showed nGO-PEG uptake. Very small percentages of mortality and abnormalities were observed in D. rerio exposed with and without the infrared lamp. Although low hazard may be expected for nGO-PEG in aquatic ecosystems, further studies with species with different life traits should be accomplished, in order to derive more accurate conclusions.


Assuntos
Grafite/toxicidade , Óxidos/toxicidade , Polietilenoglicóis/toxicidade , Animais , Antineoplásicos , Clorófitas/efeitos dos fármacos , Clorófitas/crescimento & desenvolvimento , Daphnia/efeitos dos fármacos , Sistemas de Liberação de Medicamentos , Embrião não Mamífero/efeitos dos fármacos , Cadeia Alimentar , Grafite/química , Óxidos/química , Polietilenoglicóis/química , Testes de Toxicidade/métodos , Poluentes Químicos da Água/toxicidade , Peixe-Zebra/embriologia
14.
Environ Toxicol Chem ; 37(7): 1998-2012, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29608220

RESUMO

The risk assessment of nanomaterials is essential for regulatory purposes and for sustainable nanotechnological development. Although the application of graphene oxide has been widely exploited, its environmental risk is not well understood because several environmental conditions can affect its behavior and toxicity. In the present study, the graphene oxide effect from aquatic ecosystems was assessed considering the interaction with humic acid on 9 organisms: Raphidocelis subcapitata (green algae), Lemna minor (aquatic plant), Lactuca sativa (lettuce), Daphnia magna (planktonic microcrustacean), Artemia salina (brine shrimp), Chironomus sancticaroli (Chironomidae), Hydra attenuata (freshwater polyp), and Caenorhabditis elegans and Panagrolaimus sp. (nematodes). The no-observed-effect concentration (NOEC) was calculated for each organism. The different criteria used to calculate NOEC values were transformed and plotted as a log-logistic function. The hypothetical 5 to 50% hazardous concentration values were, respectively, 0.023 (0.005-0.056) and 0.10 (0.031-0.31) mg L-1 for graphene oxide with and without humic acid, respectively. The safest scenario associated with the predicted no-effect concentration values for graphene oxide in the aquatic compartment were estimated as 20 to 100 µg L-1 (in the absence of humic acid) and 5 to 23 µg L-1 (in the presence of humic acid). Finally, the present approach contributed to the risk assessment of graphene oxide-based nanomaterials and the establishment of nano-regulations. Environ Toxicol Chem 2018;37:1998-2012. © 2018 SETAC.


Assuntos
Ecotoxicologia , Grafite/toxicidade , Substâncias Húmicas/toxicidade , Nanopartículas/toxicidade , Testes de Toxicidade , Animais , Araceae/efeitos dos fármacos , Artemia/efeitos dos fármacos , Caenorhabditis elegans/efeitos dos fármacos , Chironomidae/efeitos dos fármacos , Clorófitas/efeitos dos fármacos , Daphnia/efeitos dos fármacos , Água Doce , Grafite/química , Lactuca/efeitos dos fármacos , Espectroscopia Fotoeletrônica , Temperatura , Poluentes Químicos da Água/toxicidade
15.
Artigo em Inglês | MEDLINE | ID: mdl-29469604

RESUMO

This study investigated the impact of dissolved organic matters (DOM) on the ecological toxicity of aluminum oxide nanoparticles (Al2O3NPs) at a relatively low exposure concentration (1 mg L-1). The unicellular green alga Scenedesmus obliquus was exposed to Al2O3NP suspensions in the presence of DOM (fulvic acid) at various concentrations (1, 10, and 40 mg L-1). The results show that the presence of DOM elevated the growth inhibition toxicity of Al2O3NPs towards S. obliquus in a dose-dependent manner. Moreover, the combination of DOM at 40 mg L-1 and Al2O3NPs resulted in a synergistic effect. The relative contribution of Al-ions released from Al2O3NPs to toxicity was lower than 5%, indicating that the presence of the particles instead of the dissolved ions in the suspensions was the major toxicity sources, regardless of the presence of DOM. Furthermore, DOM at 10 and 40 mg L-1 and Al2O3NPs synergistically induced the upregulation of intercellular reactive oxygen species levels and superoxide dismutase activities. Analysis of the plasma malondialdehyde concentrations and the observation of superficial structures of S. obliquus indicated that the mixtures of DOM and Al2O3NPs showed no significant effect on membrane lipid peroxidation damage. In addition, the presence of both DOM and Al2O3NPs contributed to an enhancement in both the mitochondrial membrane potential and the cell membrane permeability (CMP) in S. obliquus. In particular, Al2O3NPs in the presence of 10 and 40 mg L-1 DOM caused a greater increase in CMP compared to Al2O3NPs and DOM alone treatments. In conclusion, these findings suggest that DOM at high concentrations and Al2O3NPs synergistically interrupted cell membrane functions and triggered subsequent growth inhibition toxicity.


Assuntos
Óxido de Alumínio/toxicidade , Benzopiranos/toxicidade , Água Doce/química , Água Doce/microbiologia , Microalgas/efeitos dos fármacos , Nanopartículas/toxicidade , Óxido de Alumínio/química , Clorófitas/efeitos dos fármacos , Clorófitas/fisiologia , Sinergismo Farmacológico , Malondialdeído/metabolismo , Microalgas/fisiologia , Nanopartículas/química , Espécies Reativas de Oxigênio/metabolismo , Solubilidade , Microbiologia da Água , Poluentes Químicos da Água/toxicidade
16.
Environ Toxicol Chem ; 37(1): 80-90, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28833517

RESUMO

The bioavailability of aluminum (Al) to freshwater aquatic organisms varies as a function of several water chemistry parameters, including pH, dissolved organic carbon (DOC), and water hardness. We evaluated the ability of multiple linear regression (MLR) models to predict chronic Al toxicity to a green alga (Pseudokirchneriella subcapitata), a cladoceran (Ceriodaphnia dubia), and a fish (Pimephales promelas) as a function of varying DOC, pH, and hardness conditions. The MLR models predicted toxicity values that were within a factor of 2 of observed values in 100% of the cases for P. subcapitata (10 and 20% effective concentrations [EC10s and EC20s]), 91% of the cases for C. dubia (EC10s and EC20s), and 95% (EC10s) and 91% (EC20s) of the cases for P. promelas. The MLR models were then applied to all species with Al toxicity data to derive species and genus sensitivity distributions that could be adjusted as a function of varying DOC, pH, and hardness conditions (the P. subcapitata model was applied to algae and macrophytes, the C. dubia model was applied to invertebrates, and the P. promelas model was applied to fish). Hazardous concentrations to 5% of the species or genera were then derived in 2 ways: 1) fitting a log-normal distribution to species-mean EC10s for all species (following the European Union methodology), and 2) fitting a triangular distribution to genus-mean EC20s for animals only (following the US Environmental Protection Agency methodology). Overall, MLR-based models provide a viable approach for deriving Al water quality guidelines that vary as a function of DOC, pH, and hardness conditions and are a significant improvement over bioavailability corrections based on single parameters. Environ Toxicol Chem 2018;37:80-90. © 2017 SETAC.


Assuntos
Alumínio/toxicidade , Organismos Aquáticos/fisiologia , Água Doce/química , Guias como Assunto , Testes de Toxicidade Crônica , Qualidade da Água , Animais , Organismos Aquáticos/efeitos dos fármacos , Clorófitas/efeitos dos fármacos , Clorófitas/fisiologia , Cladocera/efeitos dos fármacos , Cladocera/fisiologia , Cyprinidae/fisiologia , Modelos Lineares , Especificidade da Espécie , Água/química , Poluentes Químicos da Água/toxicidade
17.
Environ Sci Pollut Res Int ; 25(5): 4728-4738, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29197062

RESUMO

Understanding the fate and ecotoxicological effects of pesticides largely depends on their molecular properties. We recently developed "TyPol" (Typology of Pollutants), a classification method of organic compounds based on statistical analyses. It combines several environmental (sorption coefficient, degradation half-life) and one ecotoxicological (bioconcentration factor) parameters, to structural molecular descriptors (number of atoms in the molecule, molecular surface, dipole moment, energy of orbitals, etc.). The present study attempts to extend TyPol to the ecotoxicological effects of pesticides on non-target organisms, based on data analysis from available literature and databases. It revealed that relevant ecotoxicological endpoints for terrestrial organisms (e.g., soil microorganisms, invertebrates) that support a range of ecosystemic services are lacking as compared to aquatic organisms. The availability of ecotoxicological parameters was also lower for chronic than for acute ecotoxicity endpoints. Consequently, seven parameters were included for acute (EC50, LC50) and chronic (NOEC) ecotoxicological effects for one terrestrial (Eisenia sp.) and three aquatic (Daphnia sp., algae, Lemna sp.) organisms. In this new configuration, we used TyPol to classify 50 pesticides into different clusters that gather molecules with similar environmental behaviors and ecotoxicological effects. The classification results evidenced relationships between molecular descriptors, environmental parameters, and the added ecotoxicological endpoints. This proof-of-concept study also showed that TyPol in silico classification can successfully address new scientific questions and be expanded with other parameters of interest.


Assuntos
Ecotoxicologia/métodos , Monitoramento Ambiental/métodos , Poluentes Ambientais/classificação , Praguicidas/classificação , Animais , Clorófitas/efeitos dos fármacos , Análise por Conglomerados , Daphnia/efeitos dos fármacos , Ecossistema , Poluentes Ambientais/química , Poluentes Ambientais/toxicidade , Dose Letal Mediana , Oligoquetos/efeitos dos fármacos , Praguicidas/química , Praguicidas/toxicidade , Testes de Toxicidade
18.
Ecotoxicology ; 27(2): 132-143, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29170931

RESUMO

In the frame of a project which consists in modeling a laboratory microcosm under cadmium pressure, we initiated this study on the fate and effects of cadmium in the presence of either the microalga Pseudokirchneriella subcapitata or the duckweed Lemna minor, two organisms of the microcosm. For each organism, growth inhibition tests on a duration of 2-3 weeks were carried out with the objective of linking effects with total dissolved, ionic and internalized forms of cadmium. Numbers of organisms (algal cells or duckweed fronds) in 2-L beakers filled with synthetic nutritive medium containing EDTA were counted during the course of assays, while cadmium concentrations in the water and in the organisms were measured. Free cadmium fraction was calculated using PHREEQC, a computer program for chemical speciation. Results showed that cadmium toxicity to microalgae could be correlated to the free divalent fraction of this metal, limited by the presence of EDTA, and to its concentration in the organisms. Bioconcentration factors for our medium were suggested for P. subcapitata (111,000 on the basis of free cadmium concentration) and L. minor (17,812 on the basis of total dissolved concentration). No effect concentrations were roughly estimated around 400 µg/g for Pseudokirchneriella subcapitata and 200-300 µg/g for Lemna minor. This study is a first step towards a fate model based on chemical speciation for a better understanding of microcosm results.


Assuntos
Araceae/efeitos dos fármacos , Cádmio/toxicidade , Clorófitas/efeitos dos fármacos , Testes de Toxicidade , Poluentes Químicos da Água/toxicidade , Araceae/metabolismo , Clorófitas/metabolismo , Metais
19.
Chemosphere ; 191: 174-182, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29032262

RESUMO

Cadmium is one of the most dangerous metals found in wastewater since exposure to low concentrations are highly toxic for cellular functions. In this study, the effect of cadmium accumulation on Chlamydomonas reinhardtii and acid-tolerant strain CPCC 121 was investigated during 48 h under 100-600 µM of Cd and two pH conditions (4 and 7). The toxicity of accumulated Cd was determined by the change of cellular and photosynthetic parameters. Obtained results showed that the maximum capacity of Cd accumulation in algal biomass was reached for both strains at 24 h of exposure to 600 µM of Cd. Under this condition, C. reinhardtii showed a higher uptake of Cd compared to the strain CPCC 121, inducing a stronger cellular toxic impact. Chlamydomonas CPCC 121 showed a tolerance for Cd due to the exclusion of Cd at the cell wall surface, which was higher at pH 4 than pH 7. TEM images and EDX spectrum of Cd distribution within the cell confirmed the role of the cell wall as a barrier for Cd uptake. Although Cd2+ concentration was the highest in the medium, CPCC 121 was the most tolerant at pH 4, but was not enough efficient to be considered for the phycoremediation of Cd. At neutral pH, the efficiency of C. reinhardtii for the removal of Cd was limited by its toxicity, which was dependent to the concentration of Cd in the medium and the time of exposure.


Assuntos
Cádmio/análise , Chlamydomonas reinhardtii/fisiologia , Clorófitas/fisiologia , Poluentes Químicos da Água/toxicidade , Cádmio/toxicidade , Chlamydomonas reinhardtii/efeitos dos fármacos , Clorófitas/efeitos dos fármacos , Clorófitas/metabolismo , Concentração de Íons de Hidrogênio , Metais/metabolismo , Fotossíntese , Poluentes Químicos da Água/análise
20.
Environ Toxicol Chem ; 37(1): 49-60, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28833434

RESUMO

Although it is well known that increasing water hardness and dissolved organic carbon (DOC) concentrations mitigate the toxicity of aluminum (Al) to freshwater organisms in acidic water (i.e., pH < 6), these effects are less well characterized in natural waters at circumneutral pHs for which most aquatic life regulatory protection criteria apply (i.e., pH 6-8). The evaluation of Al toxicity under varying pH conditions may also be confounded by the presence of Al hydroxides and freshly precipitated Al in newly prepared test solutions. Aging and filtration of test solutions were found to greatly reduce toxicity, suggesting that toxicity from transient forms of Al could be minimized and that precipitated Al hydroxides contribute significantly to Al toxicity under circumneutral conditions, rather than dissolved or monomeric forms. Increasing pH, hardness, and DOC were found to have a protective effect against Al toxicity for fish (Pimephales promelas) and invertebrates (Ceriodaphnia dubia, Daphnia magna). For algae (Pseudokirchneriella subcapitata), the protective effects of increased hardness were only apparent at pH 6, less so at pH 7, and at pH 8, increased hardness appeared to increase the sensitivity of algae to Al. The results support the need for water quality-based aquatic life protection criteria for Al, rather than fixed value criteria, as being a more accurate predictor of Al toxicity in natural waters. Environ Toxicol Chem 2018;37:49-60. © 2017 SETAC.


Assuntos
Alumínio/toxicidade , Organismos Aquáticos/fisiologia , Carbono/análise , Água Doce , Compostos Orgânicos/análise , Animais , Organismos Aquáticos/efeitos dos fármacos , Clorófitas/efeitos dos fármacos , Cladocera/efeitos dos fármacos , Cladocera/fisiologia , Cyprinidae/fisiologia , Daphnia/efeitos dos fármacos , Daphnia/fisiologia , Dureza , Concentração de Íons de Hidrogênio , Invertebrados/efeitos dos fármacos , Invertebrados/fisiologia , Solubilidade , Testes de Toxicidade Aguda , Testes de Toxicidade Crônica , Poluentes Químicos da Água/toxicidade , Qualidade da Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA